2023-24 MATH2048: Honours Linear Algebra II Homework 4

Due: 2023-10-09 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date. All questions are selected from Friedberg §2.4-2.5.

1. Let A and B be $n \times n$ matrices such that $A B$ is invertible. Prove that A and B are invertible.

Give an example to show that arbitrary matrices A and B need not be invertible if $A B$ is invertible. (By this, the book means when A, B are not square, $A B$ can still be invertible. No need to do this part.)

Proof. Let L_{A} and L_{B} be two linear transformations from F^{n} to F^{n} corresponding to multiplication by A and B respectively. Given that $A B$ is invertible, we can then say that $L_{A B}=L_{A} \circ L_{B}$ is an isomorphism.

Since $L_{A B}$ is injective, we can then infer that L_{B} is also injective, leading to the conclusion that $\operatorname{ker}\left(L_{B}\right)=0$, which implies $\operatorname{dim}\left(\operatorname{im}\left(L_{B}\right)\right)=\operatorname{dim}\left(F^{n}\right)=n$.

This leads to the conclusion that $\operatorname{im}\left(L_{B}\right)=F^{n}$, and hence L_{B} is bijective, and therefore an isomorphism.

Consequently, $L_{A}=L_{A B}\left(L_{B}\right)^{-1}$ is an isomorphism. Therefore, both A and B are invertible.
2. Let B be an $n \times n$ invertible matrix. Define $\Phi: M_{n \times n}(F) \rightarrow M_{n \times n}(F)$ by $\Phi(A)=$ $B^{-1} A B$. Prove that Φ is an isomorphism.

Proof. Firstly, let's check that Φ is linear. If P and Q are two matrices, then

$$
\Phi(c P+Q)=B^{-1}(c P+Q) B=c B^{-1} P B+B^{-1} Q B=c \Phi(P)+\Phi(Q),
$$

so Φ is indeed linear.
Secondly, define $\Psi(A)=B A B^{-1}$. It's easy to verify that $\Psi(\Phi(A))=A$ and $\Phi(\Psi(A))=A$ for all A in $M_{n \times n}(F)$, so Φ is invertible, and is an isomorphism with inverse Ψ.
3. Let A be an $n \times n$ matrix.
(a) Suppose that $A^{2}=0$. Prove that A is not invertible.
(b) Suppose that $A B=0$ for some nonzero $n \times n$ matrix B. Could A be invertible? Explain.

Proof. (a) Suppose that $A^{2}=0$. Assume that A is invertible. Then we have

$$
A=A^{-1} A^{2}=A^{-1} \cdot 0=0,
$$

which is a contradiction. The zero matrix is not invertible. Therefore, A is not invertible.
(b) Suppose that $A B=0$ for some nonzero $n \times n$ matrix B. Again, assume that A is invertible. Then we have

$$
B=\left(A^{-1} A\right) B=A^{-1}(A B)=A^{-1} \cdot 0=0,
$$

which is a contradiction since we assumed that B is a nonzero matrix. Therefore, A cannot be invertible.
4. Let A and B be 2×2 matrices. Determine the matrix of the operator $T(M)=A M B$ on the space $F^{2 \times 2}$ of 2×2 matrices, with respect to the basis $\left(e_{11}, e_{12}, e_{21}, e_{22}\right)$ of $F^{2 \times 2}$.

Proof. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$ be 2×2 matrices.
The basis of $F_{2 \times 2}$ is given as $\left(e_{11}, e_{12}, e_{21}, e_{22}\right)$, where $e_{i j}$ is a 2 x 2 matrix with 1 at the (i, j) position and 0 elsewhere.

The effect of the operator $T(M)=A M B$ on the basis elements is as follows:

1. $A e_{11} B=A\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}e & f \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}a e & a f \\ c e & c f\end{array}\right]$.
2. $A e_{12} B=A\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}g & h \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}a g & a h \\ c g & c h\end{array}\right]$.
3. $A e_{21} B=A\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right] B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ e & f\end{array}\right]=\left[\begin{array}{ll}b e & b f \\ d e & d f\end{array}\right]$.
4. $A e_{22} B=A\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ g & h\end{array}\right]=\left[\begin{array}{ll}b g & b h \\ d g & d h\end{array}\right]$.

Therefore, the matrix representing the operator $T(M)=A M B$ on the space $F_{2 \times 2}$ with respect to the basis $\left(e_{11}, e_{12}, e_{21}, e_{22}\right)$ is

$$
\left[\begin{array}{cccc}
a e & a g & b e & b g \\
a f & a h & b f & b h \\
c e & c g & d e & d g \\
c f & c h & d f & d h
\end{array}\right] .
$$

5. Find all real 2×2 matrices that carry the line $y=x$ to the line $y=3 x$.

Proof. Let T be a linear transformation on R^{2}. Then T satisfies the given property if and only if $T(1,1)=k(1,3)$ for some non-zero k. This means that the matrices we are looking for are precisely those that satisfy

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
k \\
3 k
\end{array}\right] .
$$

This equation yields a system of two linear equations:

$$
\begin{aligned}
& a+b=k \\
& c+d=3 k .
\end{aligned}
$$

Therefore, any matrix that sends the line $y=x$ to $y=3 x$ is of the form

$$
\left[\begin{array}{cc}
a & k-a \\
c & 3 k-c
\end{array}\right],
$$

where a, c, and k are real numbers and k is non-zero.

